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Abstract
A homopolar gun is discussed that could produce the high currents required for

pulsed spheromak fusion reactors even with unit current amplification and open field lines
during injection, possible because close coupling between the gun and flux conserver
reduces gun losses to acceptable levels. Example parameters are given for a gun compatible
with low cost pulsed reactors and for experiments to develop the concept.

1. Introduction
Spheromaks are potentially attractive fusion reactors, either in steady state [1, 2] or

pulsed [3,4 ]. Good energy confinement has been demonstrated in nearly sustained or
decaying spheromaks [5], with 200 eV temperatures in SSPX even at a low magnetic field B
= 0.2 T [6], and higher temperatures were achieved earlier in the CTX at 1 tesla [7]. These
high temperatures presumably indicate adequate reconnection to form closed flux surfaces,
at least during decay, therefore sufficient for pulsed reactors. The main issue appears to be
how to build up the magnetic field efficiently, to levels required for reactors [5, 8]. 

Ongoing research on SSPX is investigating buildup at low gun current and high
current amplification needed for a steady state reactor [5], perhaps requiring pulsing of the
current to encourage intermittent reconnection during buildup [8]. High current
amplification would also be attractive for pulsed reactors [4], but this may not be essential.
In a pulsed reactor, energy storage must be sufficient to create the full magnetic energy of
the spheromak each burn cycle. Delivering this energy rapidly via a high current gun or
more slowly at low current is mainly a question of technology. In this paper, we discuss a
high current gun technology based on homopolar generators.

 2. Homopolar Gun Concept
The homopolar gun concept is shown schematically in Figure 1. It resembles the

coaxial gun in SSPX, except that here one electrode is a rotor spinning in the bias field Bo at
angular frequency w. The spinning rotor acts as a flywheel with moment of inertia IM ,
storing energy:



EROTOR = 1/2 IMw2 (1)
                             

Because of the presence of the bias field, the spinning rotor also acts as a Faraday
generator with internal radial electric field Er = rwBo producing a voltage:

V = ∫b
a dr rwBo = w(y/2p) (2)

where y = ∫b
a 2prdr Bo is the useful bias flux across the radial gap, a - b, where current

enters and exits the rotor (see Fig. 1). This voltage serves the same role as the capacitor
bank usually driving current in a coaxial gun. Indeed, once current I is flowing, the rotor
behaves like a capacitor, as can be seen by equating dEROTOR/dt = - IV, using Eq. (2) to
express w in terms of V and dividing by V to obtain [9]:

dV/dt = - I/C (3)

C = IM/(y/2p)2 (4)

To create a spheromak using the homopolar gun, one would first spin up the rotor
and then inject gas to create a plasma. After breakdown, current begins to flow around the
path indicated in Figure 1, entering the rotor near the axis (if Er > 0) and exiting at the rim
where it returns to a stationary electrode that closes the current path. It may or may not be
necessary to define this path by insulating the face of the rotor between the entry and exit
annuli, since this path minimizes the resistance as we shall see.  It is essential that the other
electrode be stationary relative to the rotor, as must the “brushes” in a usual Faraday
generator. Here the plasma replaces the brushes.

Build up of the current can be described by:

LI dI/dt = V - IRW (5)

where LI is the plasma inductance and RW  is its resistance. We neglect energy in inductive
acceleration of the plasma, valid for buildup slower than Alfven times, and we also omit
energy in small electrostatic ExB drifts present with any coaxial gun, and viscous drag on
the plasma by the rotor, specific to the homopolar gun but also small (dv < wa).

A spheromak is formed in the usual way. As I increases, the poloidal current loop
shown in Figure 1 begins to expand by interaction with its own toroidal field, into the flux



conserver since it cannot expand into the solid electrodes. The poloidal bias field opposes
this expansion, by inducing toroidal currents in the expanding plasma. When the gun
current is large enough, expansion proceeds in any case, the induced toroidal currents
serving to stretch the poloidal bias flux as the plasma expands. The threshold to do this is
known as “bubbleburst”, occurring when:

 I  > Io ≡ (loyGUN/mo) bubbleburst (6)

where yGUN = pb2Bo is the bias fraction injecting helicity and lo = 5/R with flux conserver
radius R. The criterion of Eq. (6), essential to create a spheromak, is just the condition that,
in expanding, the gun current I carries into the flux conserver enough helicity to create a
spheromak with toroidal current ITOR = I [8].

We conclude that, in principle, a homopolar gun operates like any magnetized
coaxial gun with the important advantage that the external power circuit is collapsed into the
spinning rotor mounted directly on the flux conserver. Moreover, using advanced flywheel
technology [10], the rotor can store many MJ of energy in a rotor of small size. It is this
combination of close coupling of the gun and flux conserver and a large energy storage
capacity that allows a homopolar gun to build up the high currents required for pulsed
spheromak reactors with unit current amplification.

3. Voltage Requirements
Eq. (5) describes the buildup of current flowing along open field lines connected to

the gun. As the line length L stretches at the onset of bubbleburst, LI  increases from that in
the gun µ moa to include that in the flux conserver of radius R:

LI ª 1/4 mo(a + R) ª 1/2 moR    after bubbleburst (7)

The resistance is given by:

IRW = VS + hjL (8)

VS = g Te (9)

j = I/A (10)



Here VS is the sheath voltage proportional to the electron temperature Te in eV units; h is the
plasma classical resistivity = ho /Te

3/2  with ho = 1.3 x 10-3 ; and j is the current density on
open lines with cross-sectional area A. Here we have omitted the rotor and electrode
resistances, discussed in Section 4 and the Appendix.

Since heat conduction is fast along open field lines, we assume quasi-steady heat
flow, giving for short mean-free-path:

hj2 = - nc | | —2Te (11)

where c | |  = (T/hne2). The solution to Eq. (11) is [11]:

Te = 0.4 hjL (12)

with line length L. Using h = ho /Te
3/2 and Eq. (10), we obtain:

Te = a (I/R)2/5 (13)

a = (0.4 hoLR/A)2/5 (14)
               

Combining Eqs. (8), (9), (10), (12) and (13) gives the sheath and ohmic resistance:

RW = a(g + 2.5) (I3/5R2/5)-1 = 1.1 (I3/5R2/5)-1 (15)

In the second step, we assume open lines filling the flux conserver at the onset of
bubbleburst, giving L ª pR (one turn) and A ª 1/4 pR2 from which a = 0.11, and we take g
= 7 that gives a best fit to SSPX data [12]. Then the minimum requirement to build up
current to the bubleburst condition I = Io is, by Eq. (5):

V >  IRW = 1.1 (Io /R)2/5 bubbleburst (16)

Eq. (16) accounts for both sheath loss and ohmic resistance, the sheath loss being
greater (contributing 70% for g = 7) but the combined losses are small nonetheless (RW ª
40mW for the reactor example below). For this g, at steady state Te can also be written as:

 Te = 0.1 V steady state (17)



which follows from Eq. (12) with hjL = V - VS when dI/dt = 0. It is this increase of
temperature with voltage that favors the current path in Figure 1, being the path that
maximizes the voltage driving current and hence maximizing Te and minimizing resistance.

Eq. (16) is the minimum requirement on gun voltage to create a spheromak,
applicable both to fast buildup with open field lines during buildup and to slow buildup via
a flux core, distinguished by:

I = ITOR ≥ Io     fast, open lines (18)

ITOR > I ª Io   slow, flux core (19)

BPOL = (moITOR/pR) (20)

where again ITOR is the spheromak current giving a poloidal field given by Eq. (20) and total
magnetic energy (about 2 x poloidal):

EMAG ª 2 x (1/4 p2R3)(BPOL
2/2mo) = 1/2 LI ITOR

2 (21)

giving LI ª 1/2 moR as in Eq. (7).
For the fast method of most interest here, Eq. (16) is the design criterion, since

reaching bubbleburst is tantamount to reaching the desired field level if always ITOR = I ª Io

as in Eq. (18). Eq. (16) is also the design criterion for the slow method to build up ITOR >> I
(gun) if Io is replaced by ITOR in the formula, giving:

V >  1.1 (ITOR/R)2/5 = 400 B2/5 slow (22)

Eq. (22) is obtained by calculating the channel area A for a flux core attached to the gun and
threading through a closed spheromak. As B grows the spheromak field compresses the
flux core, giving A = yGUN/B µ Io/ITOR [8] and LR/A = 5(ITOR/Io) that serves to replace Io by
ITOR  in Eq. (16) with about the same numerical coefficient. Helicity transport out of the flux
core would introduce an additional impedance causing I to hover somewhat above Io [8], but
the main effect is that of Eq. (22) requiring a higher voltage as B compresses the flux core.
Let us hold w fixed at the maximum allowed by stress levels, usually advantageous. Then,



given a voltage V exceeding V1 needed for bubbleburst by Eq. (16), the current
amplification would be:

ITOR /I ª ITOR /Io = (V/V1)3/2 slow, flux core (23)

We note that, for homopolar guns, “fast” and “slow” modes are both fast.
Another way to express the bubbleburst criterion is to note that resistance determines the
slowest buildup time, given sufficient rotor mass so that the energy supply time ª (LIC)1/2  is
not limiting. For an actual buildup time t ≤ tW = LI /RW , the bubbleburst condition is I =
(Vt /LI) > Io, which gives:

(wt/2p) > (LI lo/mo) = 5/2 (24)

That is, with or without current amplification, achieving bubbleburst requires extracting an
energy equal to that of the field at bubbleburst in about two rotation times. For t ≤ tW,
Eq. (24) is equivalent to Eq. (16).

As a corollary to Eq. (24), we can estimate the injection efficiency fPLASMA  for the
fast mode (I = Io) as:

fPLASMA = (1/2 LI I2/IVt) = 1/2 fast (25)

We note also that, for pulsed reactors, V1 to achieve bubbleburst is so large that
there is little room for improvement by current amplification due to technological limits on
the voltage that can be achieved in a homopolar gun. On the other hand, the current demands
are so high that the homopolar gun may be the unique solution in the absence of current
amplification.

Current amplification by helicity transport out of a flux core would require
intermittent instability that opens and reconnects field lines [8]. An open question is whether
reconnection ever occurs while the gun is on. Computer simulations [13] indicate that,
though the mean field in the simulation looks like a spheromak, with constant gun voltage
all of the field lines actually remain open and attached to the gun, consistent with unit
current amplification observed in many experiments [5, 8]. Hereafter we will assume unit
amplification and open field lines, as representative of the worst case most demanding on
homopolar gun technology.

4. Example Parameters for Pulsed Spheromak Reactors



In this section, we will apply the criterion of Eq. (16) to the Low Beta scenario in
Refs. [3] and [4], with parameters:

B = 27 tesla
R = 0.6 m
ITOR = 40 MA
EMAG = 157 MJ

                      
We choose a = 0.4 m, b/a = 1/÷2 and LR = 2a, with gun radius a and inner radius b

where current enters the rotor, as in Figure 1. Then yGUN = y. Using formulas above gives
for the homopolar gun parameters:

V = 1500 volts
Bo = 25 tesla (y = 2p)
w = 1500 (15,000 RPM)
t = 10 ms

where the buildup time t is given by Eq. (24).
These results assume unit current amplification, by equating gun current I = ITOR as

in Eq. (18). We see that unit current amplification requires a large bias field, Bo = 25 tesla.
Even so, this lies within the range of laboratory experience, non-destructive coil tests having
been carried out up to 60 tesla [14]. We assume normal coils, rather than superconducting,
thus introducing ohmic losses discussed below.

We also note the high current density in the gun, for which there is some experience
with plasma arcs. In any case, our design does not appear to violate fundamentals. For
example, at the high density in the reactor, n ª 102 2 m-3 , the gun current does not exceed the
ion saturation current. Electrode cooling is probably the main issue (see Appendix).

Turning to electrical properties, the gun resistance is estimated from RGUN = h(j/I)2

integrated over the rotor volume and averaged over the buildup time as current penetrates
into the plasma, as discussed in Section 6, giving crudely <h>/a divided by 2 for the time
average:

RGUN ª (<h>/2a) (26)

where <h> ª 2hCu (50% copper) with resistivity hCu ª 3.4 x 10-8 for hardened copper at



high temperature [15]. Then RGUN = 0.1mW, giving an ohmic power IGUN
2 RW = 160 MW, or

an energy loss ª 2 MJ in a buildup time t = 10 ms.
Thus the gun losses are very small, much less than the internal plasma losses, as

they must be for efficient buildup. This is made possible only by close coupling of the
homopolar gun to the flux conserver, not feasible with conventional sources supplying the
large amounts of pulsed power needed to form a spheromak in the pulsed spheromak
reactor.

The ohmic loss in the bias coil is greater, but also acceptable. Using coil current ICOIL

= aBo/mo, length a and thickness 1/3 a and hCu ª 1.7 x 10-8 (with cooling), we find:
PCOIL = ICOIL

2(hCu 6p/a) = 25 MW (27)

or 75 MJ  per cycle for the 3-second cycle assumed below. Based on these estimates, we
will take the total ohmic loss in the gun and bias coil as 75 MJ per cycle.

The burn cycle for a pulsed reactor with a homopolar gun would proceed as follows.
Mechanical power is supplied continuously by a Hallbach motor coupled directly to the
rotor-flywheel by a shaft, the motor and shaft having such low mass and energy content that
the torque on them during buildup should be minimal (or the motor could be mechanically
decoupled during the buildup). The motor draws relatively low average electrical power
from the grid, about 100 MW, compared to IV = 60 GW extracted during buildup.

Between buildup pulses, the motor spins up the rotor to produce a static voltage V
given by Eq. (2). The DT fuel gas is injected when V becomes sufficient to drive I > Io .
Introducing the gas causes breakdown and plasma formation (perhaps aided by a high
voltage trigger); current begins to flow; and the magnetic field of a spheromak builds up
rapidly as energy is extracted from the flywheel. After buildup, magnetic reconnection
disconnects the spheromak from the gun and the gun current decays, at which point the
slow replacement of the flywheel energy begins again, while the plasma burns and deposits
energy in a Flibe liquid wall of high heat capacity [3, 4]. After that, the Flibe is extracted to
transfer the energy to a heat exchanger and power generating system, and the cycle repeats.
Injecting a Flibe layer to protect the flux conserver and gun during the burn may also aid in
promoting reconnection and quenching the gun current after buildup [4].

A complete burn cycle must include energy to supply the spheromak energy plus
losses, including the ohmic losses in the gun and, more importantly, internal losses in the
plasma. We estimate the efficiency with respect to internal losses as 50%, by Eq. (25),
giving an internal loss equal to EMAG = 157 MJ. We have not included explicit energy loss
during reconnection, which probably occurs during the nominal buildup time and hence is



already included in the efficiency estimate of Eq. (25). Note that to accommodate the losses
the peak rotation speed must be ÷2 x 1500 = 2100.

With these assumptions, the total stored energy including that to supply the gun
ohmic loss is 2 x 157 + 2 = 316 MJ, giving an overall gun efficiency = 157/316 ª 50% as
assumed in Ref. [4]. Other details are given in the Appendix.

5. Mechanical Stresses and Rotor Design
The dual use of the rotor as both Faraday generator and flywheel requires a material,

or combination of materials, that is both strong and highly conducting. Ordinary conductors
such as copper are weak mechanically. Hardened copper alloys such as Glidcop are about
as strong as the best steels [15], but even this is inadequate at rotation speeds satisfying the
buildup requirement, typically requiring w > 1000 (10,000 RPM). The Post flywheel design
concept in Reference [10], already reduced to practice in industry, does operate at the
required rotation speeds. However, as normally constructed the Post flywheel is not a good
conductor.

A solution applying Post’s design principles to a rotor combining strength and
good electrical conductivity is shown in Figure 2. The Post flywheel consists of loosely
coupled concentric cylinders of carbon fibers or other strong fibers bonded by epoxy or
other available bonding materials. Similarly, the rotor design in Figure 2 consists of
concentric dish-like shells containing both the circular strong fibers of Post’s flywheel and
also radial sheets or filaments of a good conductor such as Glidcop, all bonded together.
The dish shape accommodates conducting paths with a radial component required for
voltage generation by Eq. (2), and also an axial component that allows transfer of centrifugal
forces on the conductor to the strong fibers. The parallel current paths through the shells are
closed through a center conductor of small radius, giving the current path of Figure 1, with
current entering near the axis and exiting at the rim. Mechanical stability follows as in
Reference [10].

The hoop stress due to rotation is greatest near the rim, giving:

THOOP ª ra2w2  (28)

where r is the mass density of the shells, mostly due to the Glidcop. The hoop stress is
taken up by the strong fibers. However, there is also a differential stress across individual



shells that could break bonding within the shell, with magnitude D(dF/dr)/A ª Drrw2 for
shell radial thickness D. For N shells, D = a/N, giving a typical bond stress:

TS(bond) ª (1/N)(rarw2) < (1/N)THOOP (29)

Torque due to j x B forces extracting energy from the rotor can be similarly diluted by the
shell design of Figure 2, as discussed in Section 6.

For conceptual design purposes, the composite design of Figure 2 can be
represented by average quantities depending on the volume fraction of conductor, fCu:

<r> = 1000[(1 - fCu) + 8.9fCu ] (30)

<THOOP> = (1 - fCu) TS (fiber) (31)

where in Eq. (30), we take r = 8900 for copper and a nominal value r = 1000 for bond and
fiber, and in Eq. (31) we neglect hoop stress taken up by the conductor. For the reactor
parameters of Section 4, <THOOP> = 250 ksi (half fiber, TS = 500 ksi in fiber), perhaps
requiring N ª 25 to avoid bonding failure. In some applications below, it will be found
advantageous to decrease fCu even more, in order to allow larger w by Eq. (28) while holding
TS (fiber) at safe levels.

Other constraints on fCu are the gun resistance (not usually limiting) and ohmic
heating of the conductor. Ignoring conduction during the rapid buildup gives the
temperature rise in the copper with volume heat capacity C = 3.3 MJ/oKm3:

DT (oK)   =  (EW/CfCu pa2LR) (32)

During a buildup time t = (5p/2w) by Eq. ((24):

EW (t) = tI2RGUN = I2(5phCu/2fCuwa) (33)

with RGUN from Eq. (26) and <h> = fCu
-1hCu and hCu = 3.4 x 10-8 for hardened copper at

high temperature [15].
A convenient expression to determine experimental parameters in Section 7 is

obtained from Eq. (28) with average quantities in Eqs. (30) and (31), giving:



wa = 83.6(TS)1/2 [1 + 8.9fCu(1 - fCu)-1]-1/2 (34)

where now TS is the fiber hoop stress in ksi (= 1000 psi = 7 x 106 Pa). Introducing this into
V in Eq. (2) and introducing this result into Eq. (16) with yGUN = y gives:

y ≥ 400 R1/3(a/R)5/3 [1 + 8.9fCu(1 - fCu)-1]5/6 TS
- 5/6 (35)

For the design of Figure 2, Eq. (35) gives uniquely the minimum bias flux needed to
create a spheromak by homopolar gun injection, within stress tolerance TS. Note the
advantage of a small gun radius a in reducing the required bias flux. There appears to be no
limit on a in principle, the bubbleburst criterion depending on the flux conserver dimension,
through lo, but not the gun dimension.

6. Torque Stress
In addition to rotational stresses, the homopolar rotor also experiences shear stress

due to jxB forces extracting energy from the rotor. Initially these forces are concentrated at
the outer radii due to the skin effect. We can calculate the rate of penetration of current by
integrating Ohm’s law around a current loop, giving:

∫dzdA {- ∂Az /∂t  +  (v x B)z  +   ES  -  hjz  } = 0 (36)

where z denotes distance along the current path with area weighting dA to give constant
current (parallel to field lines in the plasma, with dA = B-1). Here (v x B)z is the z-
component of the rotor EMF that produces the voltage V in Eq. (2) appearing as an
electrostatic polarization voltage across the rotor face, and Es is the sheath drop over a
Debye sheath thickness at the electrode.

Eq. (36) is the local equivalent of the circuit equation, Eq. (5). As in that equation,
the dominant resistance is in the sheath and plasma, and after bubbleburst the dominant
inductance is that of the flux conserver. Thus current penetrates through the rotor at the rate
it would penetrate into the plasma alone, in a time tW = LI /RW that includes the sheath. The
radius rI  of the current boundary diffuses inward as (a - rI)2 = a2(t/tW), while the gun current
grows on a timescale t ≤ tW depending on the voltage. Thus:

rI = a(1 - (t/tW)1/2) (37)



I(t) =  (t/t)I ≥ (t/tW)I (38)

where I is the final value. This tendency of the current to concentrate outward also makes
the current path in Figure 1 a preferred one from the outset.

For the design of Figure 2, Eq. (37) indicates that current first builds up in the outer
shell, thus applying a torque on that shell relative to inner shells. The torque T is just power
divided by w, giving:

T(t) =    (I(t)V/w)  =  (t/t)(Iy/2p)  ≤  T   ≡   (Iy/2p) (39)

Though this torque is applied in a concentrated volume, mechanical and bonding forces
distribute the torque over the rotor as long as shear forces are weak enough so that the rotor
acts as a rigid body. Thus, we can obtain an estimate of shear stress by assuming a rigid
body, calculating the differential stress across a shell, and requiring that this not exceed the
shear strength of the bonding and coupling materials. And since the total torque is greatest
at the final current by Eq. (39), so also is the differential stress, allowing us to calculate only
the final stresses to design the rotor.

The shear stress across one of N shells of thickness D = a/N is obtained by
calculating the difference in torque force across the shell divided by the area of the shell.
The torque acting at the surface of a shell of radius r is proportional to (r/a)4, giving the
following azimuthal torque force Fq = T/r:

Fq(r) = (r/a)3(T/a)  (40)

Then the shear stress across a shell at r is:

TS(shear) = D(dF/dr)/A  =  (1/N)(r/a)TSMAX   ≤   (1/N)TSMAX (41)

TSMAX = 3(T/2pa2LR) = (3/2p)(Iy/2pa2LR) (42)

where we approximate A = 2prLR , as if shells were cylindrical.
For the reactor example, TSMAX = 21 ksi << THOOP . Thus rotational stress is probably

more important than torque shear in determining how many shells are required.

7. Parameters for Homopolar Gun Experiments



In this section, we use results of the previous sections to explore parameters for
experiments to test and develop the homopolar gun concept.

a. Current Generator Experiment
The first experimental test might be a low voltage bench experiment to demonstrate

the generation of current, interesting in its own right. An example setup is shown in Figure
3, in which a solid Glidcop or steel rotor at one end of a short cylinder is used to generate
current to a load across a segmented stationary electrode at the other end. Parameters
consistent with the strength of Glidcop (taken as 50 ksi) are:

a = 0.2 m
Bo = 5 tesla (y = 0.2p)
w = 1000 (r = 8900, TS = 50 ksi)
V = 100 volts

                                  
For a dead-short load, Eq. (17) gives Te = 0.1V = 10eV and VS = 70 votls, giving a

plasma resistivity h = ho/T3/2 = 4.1 x 10-5 and resistance RW ª (h2a/A) = 2.6 x 10-4 along a
pathlength 2a (up and down the cylinder of length and radius a) and area A ª 1/2 pa2,
yielding:

I = (V - VS)/ RW = 0.1 MA
B ª (moI/2pa) = 0.8 tesla

Higher current could be obtained by shortening the cylinder.
Experiments might include temporarily placing an insulator in front of the stationary

electrode (see Figure 3). With the insulator, the plasma would polarize like the rotor and
rotate with it by electrostatic ExB, but no current would flow. For experiments without the
insulator, varying the load resistance would trace an I-V curve elucidating the plasma
impedance properties.

b. Ringing
Before discussing spheromak experiments, we should point out a feature of

homopolar guns made clear in Eqs. (3) and (5). If we neglect the losses, these equations
give sinusoidally oscillating current and frequency, indicating “ringing,” as would be the
case for a capacitor bank with no crowbar. This is a correct physical effect, in which the jxB
torque on the rotor spins up the rotor when the current reverses.



Ringing would not occur in a reactor, in which, as noted above, an incoming jet of
Flibe quenches the gun current after buildup. However, ringing might occur in experiments
and persist until residual magnetic energy in the gun is dissipated. There is some experience
in a spheromak device without a crowbar in the BCTX experiment at U. C. Berkeley [16].

With ringing, the temperature rise would be higher than that estimated using
Eq. (33) in Eq. (32), a better guess being EW = 1/2 EMAG  ª the residual magnetic energy in
the gun after buildup is over.

c. Spheromak Experiments
We list below examples of experiments sufficient to produce spheromaks using the

homopolar gun design of Figure 2, described by Eq.(35). Cases are labeled by their
potential roles in a development program. Details are given in Tables 1 and 2.

The order of calculation employed here is first to choose dimensions a and R,
conductor fraction fCu and hoop stress TS, which determines w by Eq. (28) and the lower
bound on the bias flux y entered in the tables by Eq. (35), from which we can calculate B
and I, and so on. The temperature excursion in the conductor is obtained from Eq. (32).

Table 1 shows the result of using to advantage a varying conductor fraction fCu to
obtain moderate fields and magnetic energies, scaling up to ignition and pulsed reactors in
Case 5. All cases in Table 1 assume a composite rotor, like Figure 2, with TS = 500 ksi.
Note that this is stress on the carbon fibers, not the average stress (see Eq. (31)). In all
cases, it is assumed that the rotor energy must be about 2EMAG to compensate for losses. For
Cases 1, 2 and 3, the rotor energy is greater than needed, the rotor length-to-radius ratio
being chosen to limit the temperature excursion. Table 2 repeats Case 4 of Table 1 with a
variation of the stress TS.

For all cases, the temperature rise shown in the tables corresponds to EW = 1/2 EMAG

in Eq. (32) to account for ringing in experiments as discussed in Section 7b above. The
temperature rise during buildup, with EW  in Eq. (33), is very small, < few oK for all cases.
This very low resistive temperature excursion in the rotor would be correct for pulsed
reactors, in which Flibe injection quenches the current after buildup.

The following are key examples, discussed below. Case numbers follow labels in
the tables. Parameters listed are the rotor speed w, gun radius a, flux conserver radius R, gun
voltage V and spheromak field B:

w(s-1) a(m) R(m) V(volts)    B(T)
Case 1, SSPX 8950 0.2 0.5 580      2.6



Case 4, Proof-of-Principle 2970 0.2 0.6 968      9.0
Case 5, Ignition 1500 0.4 0.6 1500     27.0

c. Possible SSPX Experiments
Case 1 is marginally applicable to an experiment in SSPX, though the full

bubbleburst current leads to a magnetic field B = 2.6 tesla that is perhaps beyond the
strength limits of the existing flux conserver.

Note the small size of the gun, a = 0.2 m, needed to take advantage of the reduction
factor (a/R)5/3 in Eq. (35). However, there is no essential reason for a large gun, the
bubbleburst criterion being independent of gun size, as noted above.

Note also the high rotor speed w required to provide sufficient voltage at a bias flux
low enough to allow bubbleburst at this field and current level. However, it is wa, not w, that
counts in determining tensile stress.

The small conductor fraction for this case gives a higher temperature rise. The rotor
length, chosen to limit the temperature excursion, gives a large rotor energy requiring a long
spin up time (e.g. one minute for a 0.3 MW drive motor).

d. Proof-of-Principle Experiment
Case 4, explored further in Table 2, might be the basis for a proof-of-principle test

demonstrating homopolar gun performance and spheromak energy confinement up to B = 9
tesla, sufficient to reach temperatures of many KeV after reconnection, and the confinement
regime of reactors.

Note that reducing the fiber stress limit gave a rotation speed and rotor energy too
small to achieve bubbleburst. For that case (Case 4a, TS = 250 ksi), the current is obtained
by equating EMAG to EROTOR from Eqs. (1) and (21).

e. Ignition Experiment
Case 5 meets the estimated requirement for ohmic ignition, given approximately by

BR > 16/(bB)1/3[3]; or, in terms of current, with b ª 3%:

I(MA) > 46 R1/4 ignition (43)

Parameters for this case correspond to those of the pulsed spheromak reactor in
Refs. [3] and [4], discussed in the next section. With 50-50 DT fuel, the fusion yield would
be about 3GJ. Ignition may still occur with a lower fraction of tritium and lower yield.
Parameters have not been optimized.



Note the larger gun dimensions for this case, needed to supply the required
magnetic energy meeting the ignition condition above.

The rotor design for this case exemplifies the ability of the Post flywheel to store
energy in a compact space, storing 360 MJ with rotor radius only 0.4 m and length 0.8 m
(see Appendix). With moment of inertia IM = 160 kgm2 and bias flux y = 2p webers, the
rotor has an equivalent capacitance by Eq. (4) of 160 Farads but a modest voltage (< 2 kV).

8. Isolating the Homopolar Generator
As shown in Figure 4, the homopolar generator plasma could be isolated from the

spheromak by inserting an annular stationary electrode like that in Figure 3 between the
rotor and the cylindrical electrode of Figure 2. The annular electrode, with an insulator
between the rim and axis, would act as a coaxial gun fed by the rotor generator. One
advantage might be flexibility in choosing a plasma of different atomic composition and
density in the generator, potentially a way of handling surface heat loads on the rotor as
discussed in the Appendix. While the voltage requirement would increase due to resistance
on the rotor side, this could be greatly reduced and heat loads on the rotor reduced also by
making the gap distance d between the rotor and annular electrode small, so as to reduce a
in Eq. (14) for this additional resistance. Isolating the generator would also make possible
higher generator voltage using the known technique of a rotor made up of several disks in
series.

By lengthening the annular gun electrode structure so that generator bias flux
expands in passing to the gun side, the bias at the rotor yROT  can be greater than y at the
gun, thereby breaking the strict requirements of Eq. (35) though Eq. (16) must still be
satisfied. This is equivalent to supplying power to a conventional coaxial gun by means of
an independent homopolar generator, but doing so in a compact design that eliminates the
conventional busbar, the extended annular electrode itself serving as the “busbar.” This
approach would allow us to obtain the voltage needed to satisfy Eq. (16) by pushing the
rotor bias BROT to its technological limits rather than the rotor itself. For example, taking wa
= 200 for Glidcop (50 ksi, as in the experiment of Section 7a) and yROT = pa2BROT, the
voltage that could be obtained from a Glidcop rotor is:

V =  w(yROT /2p) = 100BROTa Glidcop (44)

Taking a = 0.4 m as in the pulsed reactor design of Section 4 and BROT = 40 T (less than the
maximum 60 T obtained in the laboratory to date without destroying the coil [14]), we



obtain V = 1600 sufficient  for the reactor, with yROT = 6.4p,  conveniently expanded to y =
2p over a short annular electrode. Using conventional coils, the coil power would be
prohibitive, requiring perhaps a shielded superconducting outer coil with a conventional coil
inside it. Similarly, for BROT = 10 T and a = 0.3 m gives V = 300 volts, perhaps a suitable
candidate for a small second gun in SSPX.

These ideas could be applied to a compact design like Figure 4, with a Glidcop
rotor.

9. Conclusions
The homopolar gun concept described here builds on laboratory experience

demonstrating good heat confinement in nearly sustained or decaying spheromaks, and it
bypasses in a pulsed spheromak reactor the requirement for high current amplification that
appears to be essential for a steady state reactor.

An essential feature is the close coupling of the gun and flux conserver, making
possible a very low gun resistance, typically < 1 mW by Eq. (26). Thus the gun can drive
very high current at moderate voltages. Homopolar generators are inherently low voltage,
high current devices well suited to this application.

The proposed buildup cycle including helicity  injection and subsequent relaxation
to a closed configuration with ohmic heating to ignition temperatures could be modeled on
NIMROD [13].

An experimental program to develop a pulsed spheromak reactor with high current
gun injection is discussed briefly in Section 7, using the design of Figure 2, and in Section
8, using the design of Figure 4. We conclude that, based on the examples of Tables 1 and 2,
homopolar guns are particularly useful to achieve magnetic fields higher than those
attainable in SSPX, while an extended SSPX program with more capacitor bank energy
could explore the regime up to B = 1 tesla (T Æ 1 keV), even with unit current
amplification, in order to verify further the processes of formation, reconnection and energy
confinement in spheromaks prerequisite to ignition experiments and reactors based on
homopolar guns.

The immediately useful experiment would be the bench test of homopolar current
generation discussed in Section 7a, yielding perhaps 0.1 MA at 100 volts with a solid
Glidcop rotor of 20 cm radius spinning at 10,000 RPM. Experiments with such a device
would elucidate problems and motivate design improvements.
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Table 1. Homopolar Gun Parameters for Spheromak Experiments
Design Parameters
Case a(m) R(m) LR(m) fCu y(Web) Bo(T)
1 0.2 0.5 0.2 0.01 0.41 3.3
2 0.2 0.6 0.05 0.1 0.54 4.2
3 0.2 0.6 0.1 0.25 0.96 7.6
4 0.2 0.6 0.6 0.5 2.05 16
5 0.4 0.6 0.8 0.5 6.28 14
Operating Parameters
Case w(s-1) B(T) I(MA) TS(ksi) V(volts)EMAG(MJ) EROT(MJ)     DT(oK)*
1 8950 2.6 3.3 500 580 0.83 22 500
2 6625 2.3 3.5 500 570 1.2 5 284
3 4690 4.2 6.3 500 716 3.8 8 183
4 2970 9.0 13.5 500 968 17.6 33 211
5 1500 27 40 500 1500 157 360 (peak) 216
*For EW = 1/2 EMAG  here and in Table 2. See text.

Table 2. Case 4, Table 1, with Variable TS

Design Parameters



Case a(m) R(m) LR(m) fCu y(Web) Bo(T)
4a 0.2 0.6 0.6 0.5 2.84 23
4b 0.2 0.6 0.6 0.5 2.05 16
4c 0.2 0.6 0.6 0.5 1.46 12

Operating Parameters
Case w(s-1) B(T) I(MA) TS(ksi) V(volts)EMAG(MJ) EROT(MJ)      DT(oK)*
4a 2100 8.8 13.2 250 948 16.5** 16.5 199
4b 2970 9.0 13.6 500 968 17.6 33 211
4c 3635 6.5 9.73 750 845 9.01 49 217
**Limited by EMAG = EROT ; no bubbleburst. All other cases satisfy Eq. (35).

Appendix. Pulsed Spheromak Fusion Reactor
In this Appendix, we give more details for the reactor discussed in Section 4. In that

section, ohmic losses in the gun and bias coil were estimated as 75 MJ per burn cycle. To
avoid sputtering and for other reasons discussed below, it may be necessary to clad Glidcop
surfaces exposed to the plasma with tungsten, but this would not significantly affect
resistance. As was also discussed in Section 4, in addition to ohmic losses, the flywheel
must provide 157 MJ of magnetic energy to the spheromak and an estimated additional 157
MJ to account for internal losses in the plasma.

Combining these estimates with those of Ref.[4] gives the following energy budget
for a burn cycle:

Thermal output from fusion yield         3768 MJ
Electric output (40% conversion efficiency)         1507 MJ
Input to spheromak field           157 MJ
Plasma internal losses and residual energy in gun           157 MJ
Gun and bias coil losses 75 MJ
Net to customer          1118 MJ
Plant efficiency = 1118/3768  30%

                                   We
have omitted allowance for heat transfer and auxiliaries, perhaps reasonable given the
simplicity of the system. Estimates indicate that heat loss associated with transferring Flibe
from the reactor chamber to the heat exchanger could be only 1 MJ per cycle.



The homopolar generator rotor for this case is that  in Case 5, Table 1, with radius a
= 0.4m and length LR = 0.8m and average density <r> = 5000 (50% Glidcop), giving a
rotor mass M = 2000 kg and moment of inertia IM = 160 kgm2. At the peak rotor speed w =
÷2 x 1500, Eq. (1) gives a stored energy exceeding buildup requirements of 316 MJ:

EROTOR = 1/2 IMw2 = 360 MJ peak
                       

The rotor mass and that of the Hallbach motor are small compared with 100 tons for
the reactor chamber [4]. Hence the reactor cost is unchanged, nominally $15 M for the heat
source [4]. We assume a cycle time of 3 seconds, giving:

Cycle period       3 sec
Net Power out = 1118/3         370 Mwe

This gives a nominal capital cost of $40/KWe for the reactor chamber and gun assembly.
The overall plant efficiency is 30% for the numbers above.

Other features and issues discussed in Ref. [4] are similar. The gun and bias coils
(ª 3 tons) might triple the copper waste stream, still only 4 tons/year including the flux
conserver. Despite the close coupling of the gun to the reactor chamber, the protective Flibe
layer would tend to flood the gun during the burn, thereby shielding the gun, and copper
alloys continue to harden under radiation [15]. These alloys also swell under radiation [15].
We do not yet have information on neutron damage to other rotor materials.

Another important issue is surface heating of electrodes by sheath and plasma
losses [12]. These losses (157 MJ) greatly exceed the electrode surface heating capacity,
ultimately requiring absorption in Flibe to become part of the overall heat load extracted by
Flibe coolant each burn cycle. A precursor injection of about 20 kg of Flibe is needed.

One approach to handling surface heating would be to isolate the rotor from the flux
conserver using the design concept of Figure 4, mentioned in Section 8, in which an annular
electrode like that in Figure 3 is inserted between the rotor and flux conserver. Using
formulas in Reference [17], we estimate that a spacing d = 2.5 mm gives a time-averaged
resistive heat load of 1.1 GW, using a in Eq. (14) for this d, depositing 11 MJ on the rotor
and electrode surfaces during a buildup time t = 10 ms. (Increasing the spacing to d = 1 cm
increases the deposition to 19 MJ.) Thin tungsten cladding  ª 1 mm thick, bonded to the
inner surface of the dish rotor (where carbon fiber can take up centrifugal force stress), and



also on the annular electrode, can absorb this energy without cooling (hemispheric shape
giving A = 2pa2 = 1m2 rotor surface area, thermal conductivity K = 163, mass heat capacity
C = 134, density r = 19,300 in MKS units, giving DT = 3000 oK below the melting point =
3370 oK). Helium gas can carry this heat away between burn cycles, the helium serving also
as the gas to create the plasma “brushes” between the rotor and annular electrode. By
routing helium through perforations in the rotor shaft, the rotor itself can pump the helium
with a pumping speed ª w, giving a cooling power ª 80 pHe in MW with helium pressure
pHe in ksi. Steady cooling at an average rate 3.7 MW would suffice, giving pHe = 0.05 and a
product nHed = 2 x 102 2 near the minimum of the Paschen breakdown curve (and an electron
mean free path << d, consistent with our equations). A pressure burst pHe = 12 ksi (requiring
a plenum and valve) could provide active cooling matching the 1.1 GW heat deposition rate
during buildup, probably requiring a voltage spike for breakdown.

A precursor 20 kg of Flibe would still be required to protect the annular electrode on
the side facing the flux conserver. Injection over the 10 ms buildup, at velocity v = a/t = 40
m/s, requires little energy but does add resistance across the Flibe layer, around 15 mW for a
layer thickness 3 mm, compared to RW = 37.5 mW by Eq. (16). Adding to this the 2.5 mW-
equivalent resistance depositing 11 MJ in the rotor chamber, we require a voltage increase of
17.5/37.5 = 46%, to V = 2.2 kV. This voltage increase could be accommodated by a
reduction in conductor fraction to fCu = 26% allowing a 47% increase in rotation frequency
at the same fiber stress. At the higher w,the same rotor length 0.8m would provide the
additional rotor energy required. The rotor/electrode internal resistance would only increase
to 0.2 mW. The injected Flibe would also produce gaseous vapor which might contribute to
energy absorption and dispersion as radiation, as in a “gaseous divertor.”

Finally, we note that, while we have spoken of a separate Hallbach motor to drive the
rotor, as indicated in Figure 4 it is possible that electric power can be supplied directly to
spin up the rotor acting as a motor. A 120 MW d.c. power supply with voltage > 3 kV (the
rotor voltage at peak charge) would suffice. Applying the power requires brushes at the
rotor axis and rim, and it is probably this (and rotor insulation) that determines the desirable
voltage to reduce the current to that which the brushes can handle. The cost of this 120 MW
power supply, of conventional solid state design, would probably exceed other costs
mentioned above. The d.c. power could be provided continuously to drive the rotor as a
pump and to slowly recharge the rotor between burn cycles, the overall system acting as an
intermittent load (the spheromak) with a capacitor (the rotor) across the load. As described
in Section 4, the current would be initiated by injection of DT gas in the flux conserver and
extinguished by a thick Flibe layer injected when burn commences in order to protect the



flux conserver and gun from neutron damage. The Flibe layer, about 10 cm thick, introduces
a much higher resistance giving a decay time L/R ª 25 ms for the gun current after
reconnection. This decay energy has already been accounted for in the 157 MJ of internal
losses in the table above.

The increase in  losses to accomplish cooling by the approach described above
[about 1 (rotor/electrode) + 11 (rotor plasma brush) + 63(Flibe) = 75 MJ total] is offset by
recovering thermal energy in the Flibe for which credit has not been taken, now totaling 63
+ 2 x 157 = 377 MJ per cycle. This gives a new energy balance, as follows:

Thermal output from fusion yield         3768 MJ
Thermal recovery         _377 MJ
Total thermal input to generators         4145 MJ
Electric output (40% conversion efficiency)         1658 MJ
Losses accounted for above (314 MJ recoverable)           389 MJ
Surface cooling losses (63 MJ recoverable)             75 MJ
Net to customer         1194 MJ
Plant efficiency = 1194/4145  30%
 

Thus the overall performance is about the same.












